PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Systematic behavior of the Mie scattering coefficients of spheres as a function of order
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The Mie scattering coefficients of large homogeneous dielectric spheres are shown to vary systematically
with order. A general analysis of the coefficients gives formulas that depend only on two real electric and
magnetic multipole phase angles. Such angles decrease in a quasimonotonic manner with order and explain the
cutoff of Mie and Gegenbauer coefficients at order n= ¢, the outer size parameter of the sphere, independently
of the refractive index to first order. When the relative refractive index of the sphere m is moderately greater
than unity, the multipole phase angles become integer values of 7 at large orders and approach zero by a
sequence of steps in the form of a descending staircase. It is also shown that Rayleigh-Debye scattering

corresponds to the limiting case of m—1—0.

PACS number(s): 42.25.Fx, 02.30.Qy, 92.60.Mt

I. INTRODUCTION

It is well known that the Mie theory of light scattering
offers a rigorous treatment for the calculation of scattering
patterns of isotropic homogeneous and layered spheres. This
being so, it is hardly surprising that theoreticians have shown
little recent interest in the scattering from spheres. A need,
nevertheless, still exists for theoretical studies with the aim
of establishing an optimal inversion procedure for particle
characterization from experimental scattering patterns.

In a standard scattering arrangement, a polarized laser
beam is directed onto a particle and the scattered light is
collected over a detector array to produce a quasicontinuous
distribution of irradiance over scattering angles of nearly
180° in the plane of detection. The problem faced by the
experimentalist is then to determine the particle size and re-
fractive index from such data. In the case of homogeneous or
coated spheres, this is possible by matching the experimental
patterns to those of a theoretical database [1-3]. Unfortu-
nately, the procedure requires large amounts of computer
memory and cannot be performed in real time. A question
may also be raised concerning the uniqueness of the “best
fit”” theoretical pattern.

The above inversion technique may be contrasted with
that of holography, where the storage of both the amplitude
and phase of the scattered field is a necessary requirement for
object reconstruction. Since the normal scattering pattern
contains no phase information, the success of the pattern
matching as a means of inversion must therefore be ex-
plained as being due to the restrictions placed on the ampli-
tude scattering functions a, and b, of the particle by the
requirement of spherical symmetry.

Notwithstanding the value of heuristic methods for par-
ticle characterization, techniques should be sought that can
be theoretically justified. An essential step in this respect is
the derivation of a procedure that relates the scattered elec-
tric field to the irradiance pattern. Such a relationship cannot
be obtained from the Mie scattering formulas since the an-
gular functions 7,(cos 9) and r,(cos?¥) do not form a com-
plete orthogonal set for scattering angles ¢ in the range 0°—
180°. The Mie equations can, however, be reformulated in
terms of Gegenbauer functions T ,1,(00519), which do comprise

1063-651X/96/53(3)/2909(16)/$10.00 53

a complete orthogonal set [4]. As a consequence, the scat-
tered field and irradiance in the plane of detection can both
be represented by Gegenbauer series. This has a number of
advantages.

(a) The angular dependence of a scattering pattern can be
eliminated by transforming it into a discrete Gegenbauer
spectrum. This is constructed by plotting the Gegenbauer
coefficients of the irradiance as a function of the order n. In
general, such spectra have a simpler structure than the origi-
nal data.

(b) The Gegenbauer spectra exhibit a high-order cutoff at
n~2a from which particle size may be determined.

(c) A set of equations relating Gegenbauer coefficients of
the irradiance to the products of the amplitude Gegenbauer
coefficients may be obtained.

The analysis clearly offers opportunities for particle char-
acterization, but practical difficulties need to be considered.
Of these, the most important is missing data due to the en-
trance and exit apertures of the irradiating laser beam or
detector saturation for forward scattering. The latter may be
prevented by instrumental design, while the former is un-
avoidable. Nevertheless, the absent data can be recovered by
assuming forward and backward scattering to be of the form
A+ B sin®(9/2)+C sin*(9/2) and comparing the resultant
high-order ripple in the spectrum with that obtained from the
experimental results.

Features (a) and (b) of the Gegenbauer analysis of scat-
tering patterns could be used as the basis of efficient particle
fitting by matching the experimental spectrum to theoretical
spectra. But an even more powerful method of analysis ap-
pears possible through the use of the equations referred to in
(c). Solutions of the equations would yield the amplitude
Gegenbauer coefficients from which the scattering field
could be reconstructed. Unfortunately, equations of this kind
have not been studied previously and methods for their so-
lution need to be investigated. It would therefore be informa-
tive to analyze the systematic behavior of the amplitude scat-
tering coefficients a, and b, as a function of order. This is the
purpose of the present paper.

The analysis will show that the variation of the amplitude
coefficients with order can be understood in terms of two
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Multipole Value

Sm(a,)

multipole phase angles u, and v, . Furthermore, absolute val-
ues of these phase angles can be defined in terms of ampli-
tude and phase factors of Riccati-Bessel functions of the
sphere.

II. MULTIPOLE PHASE ANGLES

We consider a nonabsorbing sphere of radius a with a
refractive index m relative to the ambient medium that is
irradiated by a collimated monochromatic light beam having
a propagation constant k in the ambient medium. The scat-
tering coefficients then depend on just the two factors, the
external and internal size parameters of the sphere @=ka and
B=ma.

In the case of perpendicularly polarized scattering, the
scattering amplitude has the form [4]

x

2n+1
Si=2 m{a,,w,,(z)+b,,r,,(z)} (1a)
= 20 (Cn)J_T,l,(Z), (lb)

where 7, (cos9)=P },(cosﬂ)/sim?, 7,(cos?)
=(&/0ﬂ)P},(cosﬁ), and z=cosY for a scattering angle .
Equation (la) is Mie’s formula with electric and magnetic
multipole coefficients a,, and b,,, respectively. This may be
reformulated as a Gegenbauer series to give Eq. (1b) in
which

_n B 2n+3 n+3b 5
(C)I)J._n+1 ”+(I’l+l)(l’l+2)an+l_n+2 n+2- ()

Equivalent expressions for parallel polarized scattering may
be obtained by the interchange a,— b, and b;—a,.

Electric and magnetic multipole phase angles u, and v,
can be defined by

FIG. 1. Variation of Re(a,) and Im(a,) with
order for «=500.5, 8=510.5, and m=1.02.

_ B (@) —my (B ()
(B xu(@) —mi,(B)x,(a)’

mi, (B) (@)= (B ¥, ()
mlpr:(ﬁ)Xn( a) - l//n(B)X;’x( a) ’
where ¢,(a) and x,(a) are Riccati-Bessel functions (defined

in Appendix A) and yield the scattering coefficients through
the relations

tanu (3a)

tanv ,, = (3b)

a,=%(1—e?"n)=—je'nsinu, , (4a)
b,=%(1—e?'n)=—je'Vnsinv, . (4b)

As the particle is nonabsorbing, the internal size parameter is
real and so are u, and v,,. The real and imaginary parts of the
coefficients are

Re(a,)=sin’u,,, (5a)
Im(a,)= —cosu,sinu,, , (5b)

with similar expressions for b,,.

A few earlier studies concerning the multipole coefficients
have been carried out on approximate expressions at low
orders and the circular relation between real and imaginary
components for varying particle size at a fixed refractive in-
dex and order [5]. Our interest, however, is the variation of
a, and b, with order for a particle having a fixed refractive
index and size. Plots of the real and imaginary parts of a, and
b, are accordingly presented in Figs. 1 and 2 for a particle
with @=500.5, 8=510.5, and m=1.02. Large values were
chosen for « and B so as to generate quasicontinuous graphs
and B—a=10 ensures that m=1.

The principle feature of both figures is an oscillation in »
that increases in periodicity with order up to a cutoff value
between a and B. Such behavior can be associated with
u,=v, in which the phase angles decrease monotonically to
zero with increasing order. This may be shown by starting
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FIG. 2. Variation of Re(b,) and Im(b,) with
order for «=500.5, 8=510.5, and m=1.02.

from the cutoff order and evaluating the phase angles at the
lower orders by interpolating between the values given in
Table I obtained from Egs. (5). Thus the phase angles at zero
order are uy=vy=~10 rad. It is no coincidence that
Uug=vy,~B—a, as will be shown below.

A second weaker structure of high periodicity is also
present in the two figures. This is most noticeable for b, in
which the amplitude of the secondary oscillation increases
with order while its periodicity decreases. For the a, plots,
the secondary amplitude initially decreases between n=0 and
n=~350 before increasing as the cutoff is approached. Over
the complete range, the periodicity reduces with increasing
order.

A. Zeroth-order phase angle

Although a, and b, are not required in calculating light
scattering patterns, their phase angles may be readily derived
and give a valuable insight into the origin of the structures of
Figs. 1 and 2. Using ¢,(z)=sinz and x,(z)= —cosz, substi-
tution into Egs. (3) yields

m tan—tana

1+m tanB tana’ (62)

tanuy=

(1/m) tanB—tana
1+ (1/m)tanB tana’

tany o= (6b)

TABLE I. Special values of the phase angles and scattering
coefficients. p has integer values.
a
Im{ n}
by,
0

{ uﬂ a’l
L T
pm 0

(p+o)m 3 -3
(p+H)m 1 0
(pt+Hm 3 3

These equations may be converted using the identity

B tanA — tanB
tan(A = B)= A tanB

Thus, for Eq. (6a), uy=A—B,B=qa, and A=B+ € when

tanf —tane
m tanB=tan(f+e€)= ——"-——,
B (B+e) 1+tangB tane

giving

_ (m—1)tanB

tane= .
1+m tan’B

This shows that € is an incremental change of 8 when tanp is
multiplied by m. The solution of the phase angle u is there-
fore

(m—1)tanB

up=pB—a+e=p—a+tan” Y —-——
=8 B 1+m tan’g

} ,  (7a)

where the principle component of € is used. Similarly,

(m—l)tanﬁ}' (7b)

v0=B—a—tan_1{ m+tan’gB
A phase pir, where p is an arbitrary integer, could in general
be added to u, and v, but to obtain expressions consistent
with the definitions and values of the phase angles deter-
mined from Figs. 1 and 2 requires p=0. We note that the
increments are zero when 8 is an integer value of 7/2 and
have maximum amplitudes of tanfl{(m—l)/(Z\/;)} when
tanB=*+1/\/m for uqy and tanB=*/m for Vg-
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B. Low-order phase angles

A comparison between explicit expressions of the Riccati-
Bessel functions shows that when only the first two leading
terms are significant [6],

) nm\ n(n+1) niw n*
¥,(z)=sin z= > +TCOS z——|+0| =],

_ ni +n(n+1) . n ‘o n*
Xn— —COS Z—T TSIH 2—7 -

These expressions may be simplified into
u(z)~o(z"), (8a)

Xn(Z)mXU(Z’), (8b)

for which z’' =z—nm/24+n(n+1)/(2z) when n’<z.

An analysis as in Sec. I A then leads to the separation of
the phase angles into the dominant and incremental compo-
nents

+
S

" (9a)

V,=0,+0,. (9b)

whereas the increments are

(m—1)tanB’
a1
U= tan {1+m tan®g3’ (10b)
and
(m—1)tanB’
TR I Sl
v, tan g | (10c)

Such formulas are only valid with n’< a, 3.

Thus the dominant component exhibits a slow variation
that decreases monotonically with increasing order while the
increments alternate in sign and have a maximum possible
amplitude of tan~"{(m—1)/(2ym)}. We may now identify the
principle and secondary structure of Figs. 1 and 2 with the
dominant and incremental components, respectively, of the
phase angles.

III. GENERAL SOLUTION OF THE MULTIPOLE
PHASE ANGLES

The form of the transformed argument z' in the small-
order approximation suggests that the general case may be
analyzed in terms of the modulus and phase factors of the
Riccati-Bessel functions. We accordingly define

ltbn(z):Mn(Z)Sinﬂn(z)a Xn(z): “Mn(Z)COS’&n(Z)(, )

11a
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Y (2) =N,(2)cosd,(2), x,(2)=N,(2)sin,(z),

(11b)

which ensures that Vo(2)=¢po(2) =2z, while
,(2),¥,(z2)—0 for requires 9,(z)—0 and
¢,(z)— m/2 when n—oo. The properties and relations be-
tween these factors are presented in Appendix A where it is
shown that

n—®

;o[ #,(2)+A,(2)]
Yn(2)= M, (z)cosA,(z) (122)
, . sin[9,(2)+A,(2)]
Xn(2)= M, (z)cosA,(z) ° (12b)

where A, (z)= ¢,(z) — ¥,(z). Substitution of the above ex-
pressions in to Egs. (3) then yields

o)
tan
Up
_a tand,(B) —b tan,(a)—c tan9,(a)tand,(B)

¢ tand,(B)+a tanV,(a)tand,(B)+b ’
(13)

in which for

u,: a=m/Mﬁ(a),

U,: a=1/M,2,(a),

b=1/M(B);
b=m/M}(B);

and c=a tanA,(a)—b tanA (B). By further manipulation
(see Appendix B) the form of Eq. (13) can be reduced to

tan{ u,,] o tan[9,(B)+ 7] —tan[ I,(a)+ p] 14

v, 1+o tan[ 3,,(B) + r]tan[ I,,(a@) +p]”’
where for
u,: o=e*, tanr=e N
v,: o=e X tant=—el;

and cosh k=(a*+b*+c?)/2ab, sinh A\=(a’—b*+c?)/2bc,
and tanp=o tant. The expressions for o apply when m>1;
for m<(1 the signs of « should be reversed. The phase angles
can now be written as

(o—1)tan[ 9,(B) + 7]
1+ o tan’[9,(B)+ 7]

—(p— 1), (15)

un —
lv }=ﬁn(ﬂ)—ﬁn(a)+tan 1{

giving a dominant component

[” }=ﬁn(,3)—19n(a) (16)

n
U

and increment
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{ﬂn] 1[(U—l)tan[ﬁn(ﬁH T]}
o =tan

1+ o tan’[9,(B) + 7]

(o—1)tant
1+ o tan’7

n

—tan~! 17)

by eliminating p. Both incremental terms have their principal
values and lie in the range — /2 to +7/2. The choice of the
expressions contributing to the dominant and incremental
components is made to match the behavior of the principal
and secondary structures, respectively, of Figs. 1 and 2. Thus
u,=uv, start at 33(B) — ¥y(a)= B— « and reduce monotoni-
cally to zero with increasing order. The remaining terms of
Eq. (15) then make up the incremental component such that
u,#v, . Furthermore, u, and v, yield the incremental parts
of Egs. (7) and (10), oscillate rapidly with order, and meet
the requirements u, ,0,—0 when n—oo.

Our modulus and phase factors are closely related to those
of Bessel functions [6] and may be determined from

Ty 1X3 ppy  IX3X5 pypops
2 - _
M”(z)_1+2 22+2><4 z* +2><4><6 20

+..., (18)

m oy (g —6) | py(pi—28u,+60)
I@D)=z=ngt ot gy 8025

. (53— 38003 43228 — 5040) .

89627 v, (19)
M1 3 pa 3X5 pous
and (=311t 3 2t oxg
3XSXT popzpy
+ + ..
2X4X6  z2° ’ (20)

in which p,=(n+p)(n—p+1). When applied to the small-
order approximation Egs. (6), (17), and (19), together with
7=0, and o=m for u, and o=1/m for v, , lead to phase
angles in agreement with Egs. (10).
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FIG. 3. Parameters of electric multipole phase
angle u, for «=500.5, f=510.5, and m=1.02.
a=m/M2(a), b=1M2(B), c=a tanA,(a)
—b tanA,(B), and o,=e", where cosh k=(a*
+b%+c?)/2ab.

IV. APPLICATIONS

Our analysis is valid for all nonabsorbing spheres and
may be used to investigate the behavior of various param-
eters defined in the treatment as a function of order. Such
parameters turn out to be nonoscillatory, unlike the behavior
of a,, and b, . An exception to this is the contribution of the
phase increment arising from the term containing
tan{%,(B) + 7}. No restriction is present on the particle size
in the treatment, but for small particles plots against order
will be sparse in data points and any systematic trends may
be less discernible. Accordingly, we chose to investigate a
large sphere of fixed size «=500.5 but vary B so as to illus-
trate the behavior of three classes of particle: 8>a, B—«,
and B<a.

A. Case A: B>a, m>1

Results for a, b, ¢, and o for u,, and v, of a sphere with
a=500.5, B=510.5, and m=1.02 are given in Figs. 3 and 4,
whereas Fig. 5 shows the corresponding values of 7. The
typical monotonic variation of 1/M 2(z) against order with a
cutoff at n=z is shown by curve b of Fig. 3 and curve a of
Fig. 4. The value of ¢, on the other hand, remains very small
until a threshold is reached below n= a when it raises to a
peak at n=~f3.

To explain the features of Fig. 5 we note that when
b*=a*+c*, \=0 to give 7,=m/4 or 7,=— /4. This condi-
tion first arises in Fig. 3 when a and b cross at n
~{ma/\1+m?}— =357, obtained by applying approxima-
tion (A16). Below the crossing point a>b and c~0, yield-
ing a large positive value of \ so that 7,~0, but above the
crossing A\ is large and negative, giving 7,~/2. Thus 7,
undergoes a sharp upward transition 0—/2 at n=357. A
second occurrence of the condition b?=a?+¢? is found in
Fig. 3 at n=505 just before the crossing of b and c. This
marks a second transition of 7, from 71/2 to O, the final value
being ensured by a—0 and b— 0. Only the latter crossing is
present in Fig. 4. In this case, b>a and c~0 below n =505
so that N\ is large and negative and 7, has a small negative
value. Above n=505, a and b reduce with increasing order
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1.0 1 %
0.9 4
0.8
074
.fu 0.6 1 FIG. 4. Parameters of magnetic multipole
5 phase angle v, for a=500.5, B=510.5, and
E 051 m=1.02. a=1/M?%(a), b=m/M?2(B),
& c=a tanA,(«@)—b tanA,(B), and o,=e ¥,
041 where cosh k=(a’+b>+c?)/2ab.
0.3 1
0.2 1
0.1 *

0.0
(=]

(=3 o o o o o o o
] =3 [ 0 o 0 o
- - o~ o el ™ <

and N\ becomes large and positive to yield a final value of
7,=—/2.

A notable feature of Fig. 3 is the minimum of o, at the
crossing point of a and b at n=357. This arises since ini-
tially, o,=m=1.02, while at the crossing cosh «
=\1+c?a? k=0, and a,~1. Above n=357, both x and
o increase as a and b reduce. In contrast, o, , of Fig. 4 starts
at 0,=1/m=0.98 and reduces monotonically to zero with a
cutoff that coincides with that of curve a.

In order to discuss the incremental angles u, and v, , we
first define the separate components by

_,| (e—1)tan[ §,(B) + 7]
€, =tan 1[ o tanz[ﬁ,,(,BH-T}]’ (21a)
— 1)t
ez=tan”! (10—”2—2‘] (21b)

Parameter Value

450
500

These are plotted in Fig. 6 for u, . The first component is
oscillatory and has an envelope curve of

€?= +tan™ {sinh«/2} (22)

whenever tan[ 9,(B)+7]=*1/ Jo. Thus the amplitude of
ell’,u initially decreases to zero at n=357, where «,=0, be-
fore increasing to 7r/2 at high orders. Within the bounds, €, ,
is seen to reduce in periodicity with increasing orders. This is
accounted for by the dependence of ,() on order. At low
orders a change of order of 4 will cause 4,(8) to reduce by
27, but for higher orders An will continually increase to
obtain the same reduction in 4,(8). The component €, can
be expressed in the form

-1

€,=tan (23)

sinh(x/2)
cosh{(«/2)—\}]

FIG. 5. Variation of 7, and 7, with order for
@=500.5, 8=510.5, and m=1.02. tan7,=e M
and tan 7,= —e™, where sinh A=(a?— b2+ c?)/
2bc.
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FIG. 6. Variation of € and €, components of

the incremental angle u,, with order for a=500.5,

‘ B=510.5, and m=1.02. Values below n=400
have been magnified by a factor of 20.
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It is therefore always smaller than the positive limit of e'l’.
Below the threshold of c, €, is negligible because either |\| is
large or k=0. However, on passing the threshold of c, €,
rises to coincide with €, at a final value of 7/2. Plots similar
to Fig. 6 are obtained for the incremental components of v,,,
except that the amplitude component of the envelope curve
continuously increases with order.

When the dominant component is combined with the in-
cremental, we obtain the total phase angles u, and v,,, which
are illustrated in Fig. 7. The predominant behavior of these
plots is determined by the monotonic decrease of
U,(B)— 9,(a) from the initial values uy~v,~B— a. A sig-
nificant difference between these two curves exists, however,
due to the reduction to zero and subsequent growth of u,, as
n=357 is approached and passed. At high orders the ampli-
tudes of the increments grow, but can never exceed the domi-
nant term. The largest negative contribution of the increment
is found at »=500.5 when 9,(B)~1.43, obtained from

Phase angle

o o o o
el o 0 o
o (5] ® <

[=] o o [=] [=3
] o w =3
- - ~

Order

R e o o o O A L e S S O B B S O e S S

S (B)=m—7,~tan '(1/\o,) or 9,(B)=tan"'(1/Vo,)
—7,. Its presence has the effect of advancing the cutoff
order of the phase angle from that expected from the domi-
nant term alone. The values of #, and v, may be used to
directly calculate the Mie coefficients of a, and b, by apply-
ing Egs. (4). As the original refractive index is quite close to
unity, spheres with larger values of m were also examined.
No new features were found in the behavior of a,b,c,o, 7, or
€. An additional development, however, was observed for €,
in the range a<<n<f. This took the form of sawtooth oscil-
lations with peak-to-peak magnitudes of 7. As a conse-
quence, a rectangular staircase with steps of height 7 but
varying widths was generated in the plots of the total phase
u, and v,. An example of such a staircase can be seen in Fig.
8(D) for u,/(B— a) of a particle having @=500.5, 8=550.5,
and m=1.10. It should be noted that all the steps shown in
Fig. 8 have been scaled in height by the normalization factor.
With hindsight, we now see that the phase angle of our origi-

FIG. 7. Comparison of phase angles u, and v,
for «=500.5, B=510.5, and m=1.02. Values be-
low n=400 have been magnified by a factor of 20
and v, has a plotting increment of +2.0.

=3 o
0 o
<~ n
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u,/ (B- )

(=] o o o o o o o o
wn o w o wn o w o
- - o~ o~ ™ ™ <

Order

nal particle, curve C, approaches its cutoff by a sequence of
embryonic steps, which are partially developed in height and
profile.

A qualitative explanation of the origin of the steps can be
obtained by modifying Eq. (14a) into

A IEAC
U B) " Yu(@)
UnB) xn(@
UaB) " xul@)

(@)
" Xa(a)

tanu (24)

For values of n>a,y,(a)/x,(e)—0 but the term in the
large curly brackets continues to change sign as n increases.
Hence the solution of the equation is u,=p, where p is an
integer and the steps will occur each time the denominator in
the large curly brackets passes through zero. A similar treat-
ment can be applied to v,. In terms of our formulation, the
condition equivalent to ¢,(a)/x,(a)—0 is o— for u, and
by Eq. (17) we obtain

ﬂ,,———tanl{

1 1
tan[ 9,(B) + 7,] ~tan tanT,

=pT— ﬂn(ﬁ)a Ty~ TSU,ST,. (25)
Discontinuities then arise whenever 9,(8)=p#— 7,. In the
case of v, ,0,—0 and

v,=pm—0,(B), T,—7mR2<v,<7u/2+T7,, (26)
giving steps when 3,(B8)=(p+1/2)7m— 1,. Thus, for n>«
the total phase takes the form of a descending staircase

{Z:] =pm—9,(a), @7)

which has a cutoff at an order obtained from ¥,(8)=7—7,
for u, and 4,(B)=m/2— 7, for v, .
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450

FIG. 8. Variation of normalized phase angle
u, with order. (A) «=500.5, B=450.5, and
m=0.90; (B) a=500.5, B=490.5, and m=0.98;
(C) a=500.5, B=510.5, and m=1.02; and (D)
a=500.5, B=550.5, and m=1.10.

500
550

B. Case B: f—a, m—1—0

The limiting case of the relative refractive index ap-
proaching unity corresponds to that of the Rayleigh-Debye
sphere. For such a particle with B—a=500.5, the character-
istics of the parameters are generally similar to Figs. 3-5
except that a and b are indistinguishable, while c is greatly
reduced in magnitude and has a sharp peak at n=510. The
principle effects of these differences are that both o, and o,
remain close to unity for n <« and the largest negative peaks
of n, and u, are at n=418. Under the above conditions, the
dominant component of the phase angles is approximated by

(B—a)

Mﬁ(a) (28)

Uy
[ }*(B—a)t‘},',(ah

Uy
on using Eq. (A10). Furthermore,

[g"]~(0-~1){cos[219n(a)+21'}—00527'} (29)

h

for n<a.

Solutions of the phase angles can also be obtained by
reducing the Mie equations in the Rayleigh-Debye limit of
y=(m*—1)a/2~B— a<1 [4]. These are

1
- Yfn(@) , (308)
2ny
1+(Zn-f-l)a
v.=vfi(a), (30b)
where  fao(a)=yi(a)= ¢, (@), () and f.(a)

=fl(a@)+2¢,(a) ) (a)/a. However, because of the large
particle size in the present case, Eq. (30a) may be simplified
to

u, = yfu(a). (30c)
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Parameter Value

FIG. 9. Parameters of electric multipole phase
angle u, for «=500.5, 8=490.5, and m=0.98.
a=m/M¥a), b=1M2(B), c=a tanA,(a)
—b tanA ,(B), and o,=e where
coshk=(a%+b%+c?)/ 2ab.

-0.20 - Order

The combination of Egs. (30) and (28) then yields expres-
sions for the incremental angles,

_ 1
ﬁnz?’[f,l,(a)—M—z@S], (31)

1
5n:7[f},(a)—m], (32)

since o=1. The cutoff orders may be found from
9, (a)=(37/4)— 7, for u, and 9,(a)=(m/4)— T, for v,.

Particular formulas can be derived for o and sinh\ by
expanding f.(a) and fi(a) of Egs. (31) in modulus and
phase factors and comparing the resulting expressions with
Eq. (29). This leads to

o, =1+y{[A+B,tanA,(a)*+B}'?  (33a)
o,=1— 'y{[A —ButanA,,(a)]2+Bg}1/2, (33b)
sinh\ , = ATB;tfrm , (34a)
-B,
sinh\, = m , (34b)
where
2
_ 1 2tanA,(a)
=g W’
and

1 2tanA, (@)

B,=—+
L MZ(a)

These are valid when n<a.

C. Case C: B<a, m<1

Specimens belonging to this category have a lower refrac-
tive index than that of the ambient medium such as an air
bubble in water. It is characteristic of the class that the phase
angle and the parameter c¢ are both negative. Curves of the
various parameters are presented in Figs. 9-11 for a=500.5,
B=490.5, and m=0.98. The condition b*=a*+c? is now
satisfied only for u, at n=350, where a and b cross in Fig. 9.
This marks the 0— /2 transition of 7, shown in Fig. 11. At
orders greater than n=350, 7, remains at 7/2 while either b
or c¢ is small. However, between the threshold of ¢ and the
cutoff of b, 450<n<510, both parameters are nonzero so
that 7, drops below 7/2. As no transition is present for
v,,7,=0 except between the overlap of ¢ and b where a
negative dip is generated. The variation of o, and o, with
order is included in Figs. 9 and 10, respectively. From a
starting value of o,=m=0.98,0, initially rises to unity at
the crossover of a and b before reducing to zero as the cutoff
of b is approached. In contrast, o, has an initial value of
0,=1/m=1.02 and grows continuously with increasing or-
der.

Since the definitions of o are now different from case A,
the expression equivalent to Eq. (23) is

sinhk/2
} . (35)

€= ~tan [cosh( K/2+N\)
Hence, at high orders €; and €, have limiting values of —7/2,
as can be seen from Fig. 12 for u,. Other features of the
oscillatory component of #, are the reduction of its ampli-
tude to zero at n=350 and the termination of the oscillation
on a positive peak at n=490. The order of the last peak may
be obtained from 3,(B)=m7— 71— tan‘l(l/\/;), while that of
the preceding negative peak is (B)=7—7T
+tan”}(1/ Vo). Accordingly, when the incremental and
dominant components of the phase are combined in Fig. 13,
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1.20 /)

1.00

0.80 +
% FIG. 10. Parameters of multipole phase angle
3 0ce v, for a=5005, B=490.5, and m=0.98.
g a=1M2%a), b=m/M2(B), c=a tanA,(«a)
& o.40 —b tanA ,(B), and o,=e*, where coshx=(a’

+b%+c?)/2ab.

0.20 +

0.00

-0.20 1 Order

the last evidence of oscillatory behavior in the phase angles
is found close to the order of the last negative peak in € at
n=475. This order may be obtained from ¢,(B)=m—17,
+tan"'(1/\o) for u, or 9,(B)=m—1,—tan" '(1/\/o) for
v, . At orders greater than n=475, the total phase angles in-
crease monotonically to the cutoff of ¥,(«). In general, the
monotonic tails of the phase angles extend beyond the range
B<n<a. This is shown in curves A and B of Fig. 8 for
a=500.5 with 8=450.5 and 490.5, respectively.

V. DISCUSSION

The complex Mie scattering coefficients a, and b, of a
homogeneous sphere, which are dependent only on its size
parameters « and (3, may be expressed in terms of real elec-
tric and magnetic multipole phase angles u, and v,, respec-
tively. However, to obtain the phase angles, the trigonometric
1.60 +

1.40 +

1.20 +

1.00 +

0.80 +

0.60 +

Parameter Value

0.40 +

0.20 +

0.00 +—+—+—+—+——+—+—+——+++t—+—+++

100
150
200
250
300
350
400

-0.20 +
Order

functions of Eq. (3) require inversion and yield values only
within the range —7/2 to 7/2. Nevertheless, cases do exist
where inversion leads to absolute values of angles. An ex-
ample is the phase angle in the modulus and phase factors of
Bessel functions. It is therefore a basic assumption of our
analysis that the phase angles u, and v, can be usefully de-
fined by their absolute values as a function of order.

The method originally used in Sec. II for finding u,, and v,
from the variation of a, and b, with order is not generally
satisfactory. Accordingly, Egs. (16) and (17) should be
adopted for inverting tanu, and tanv, when a and B are
known. The equations, however, require the evaluation of the
modulus and phase factors of Riccati-Bessel functions.
M 2(z) and tanA ,(z) may be determined from Egs. (18) and
(20) or Egs. (A4) and (A11), but accurate values of ¥,(z)
can only be generated in the range —/2 to +m/2 by Eq.
(A5). An absolute specification of 4,(z) is possible by the

o -
% \/

FIG. 11. Variation of 7, and 7, with order
for «=500.5, B=490.5, and m=0.98. tan 7,
and tan 7,=—e™, where sinh\

=(a’-b%+c?)2bc.

:e_)‘u

450
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3 FIG. 12. Variation of €, and €, components of
£ -0.60 ¢ the incremental angle u,, with order for «=500.5,
[ B=490.5, and m=0.98.
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following convention. The angle at zeroth order is first found and o,>1 for B<a. The dominant component is the same
from ¥4(z)=z. For succeeding adjacent orders, the angles for both types of phase and reduce monotonically to zero
are then obtained by shifting J,(z) to the next lowest quad- with increasing order according to u,=v,= 3,(8)— %,(«a).
rant when its tangent changes sign. If no change of sign On the other hand, the incremental components are different
occurs, the angle lies in the same quadrant as that of the and oscillate as a function of order given by
preceding order. When u,, and v,, are obtained, the numerical
values of g, and b, can be calculated from Egs. (4).
An analysis of the variation of the phase angles with order iy _,|(e=Dtan[9,(B)+7]
has shown that the angles can be separated into dominant U, =t 1+ o tan?[9,(B) + 7]
u,,v, and incremental u, ,v, components: u,=u,+u, and
v,=0,+t0v,. The separation is effected by replacing the _tan-! (o—1)tan7
Riccati-Bessel functions of the Mie’s treatment by their 1+ 0 tan’7|"
modulus and phase factors. This leads to expressions that
contain 4,(«a),d,(B),0, and 7. The last two parameters,
which vary with «, B, and n, are derived from quadratic The difference arises from the alternative definitions of o
equations and have different definitions for electric and mag- and 7. In the case of v,, the oscillations are constrained
netic multipole terms. As a result, Os7,<w/2 and within an envelope that grows with order until termination
—m/2<7,<0, but 0,>1 and o,<1 when 8>, and 0,<1 before n=p, but for u,, the growth of the oscillation is ini-
Order
o 3 3 <4 2 3 2 S 3 3
o wn - - o o ™ @ < < w
0 -+ttt
un
24 —

-4 4

Phase angle

FIG. 13. Comparison of phase angles u, and
v, for =500.5, B=490.5, and m=0.98. Values
below n=400 have been magnified by a factor of
20 and v, has a plotting increment of —2.0.
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' FIG. 14. Variation of Re(c,), and Im(c,),
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tially suppressed by a requirement that the amplitude of the
envelope reduce to zero at n~{ma/\/1+m?}—1/2 when
M2(a)~mMX(B).

Plots of the multipole phase angles are also compared
when « is held constant and S is varied. For B/a<<0.98, the
oscillations of the incremental components of «, and v, ter-
minate near n=,3 to leave a monotonic tail with a cutoff just
above n=ca. At the opposite limit of B/a>1.02, the phase
angles become quantized in units of 7 for n>a to generate a
staircase function with a cutoff order before n=g. The phe-
nomenon, however, leads to no detectable experimental ef-
fects since a,,=b,=0 for quantized phase angles. Thus, for
all values of 3, a,, and b, have cutoff orders at n=a.

From the alternative formulation of Mie scattering given
by Eq. (1b), the a, and b, scattering coefficients can be re-
placed by Gegenbauer coefficients (c,), and (c,), for per-
pendicular and parallel polarization. These coefficients may
also be written in terms of the phase angles by substituting
Egs. (4) into Eq. (2) to obtain

(CII)L: —l[ s 1Sin(vn—un+1)ei(un+un+1)
n+3 10 0a)
+ n+251n(un+1 —v,p)eln n ,
(36a)
— . n . i(u,,+v +1)
(cp)y=—1i n+1sm(un—vn+1)e mtUn
n+3 1 i(Wypq1tUupt2)
+ n+2sm(vn+1_un+2)e " nt2)
(36b)

Such formulas are simplified when applied to a large
Rayleigh-Debye sphere for which y=8—«<1 and y/a<1.
As a consequence, u, v,— 0, yielding

o o
w0 (=3
< 0

| on n+
(Cn)L: -1 m(vn—un+l)+ m(un+1_vn+2)

. n 1 71
= _17[n+1 [fn(a)—fn+1(a)]
n+3 -1 .
b er(@) = fla(@)] (37a)

and

n n+3
(cn)H: —i:m(un-vrﬂrl)_i_ m(vn+l—un+2)]

=—i7[ 2 @) -1 ()]
n+1 n n+1

n+3_ -

+n_+‘i[fn+1(a’)_fn+2(a)] (37b)
by wusing Egs. (30b) and (30c). The identities
@n+1)f (@)=(n+1)f (@) +nf (@) and  f(@)

—fL (a)=2(2n+3)j2,,(a) [4] are finally invoked to
obtain

(cp) =—i2y(2n+3)j2, (), (38a)

(eahi==i29[njy(a)+(n+3)j55(e)].  (38b)
The coefficients are in agreement with those derived from
the Rayleigh-Debye scattering formulas when y/a—0 [4].
Hence we can now see that the Rayleigh-Debye treatment is
valid for the limiting case of m—1—0. Such a condition
ensures that both y<1 and y/a<<1. For small spheres where
a<<1, the condition y<<1 only is insufficient to specify
Rayleigh-Debye scattering and deviations can be present.
This case has been discussed in Ref. [4], where for a<1 it
was shown that the scattering coefficients reduce to the
Rayleigh-Debye form but contain additional weighting fac-
tors when y/a is not negligible.
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FIG. 15. Variation of Re(c,),; and Im(c,),
with order for «=500.5, 8=510.5, and m=1.02.
The imaginary component has a plotting incre-
ment of —0.8.

Graphs of (c,), are shown in Figs. 14 and 15 for
a=500.5, B=500.55, and m=1.0001 and «a=500.5,
B=510.5, and m=1.02, respectively. The first particle is a
good approximation to a Rayleigh-Debye sphere since
v=0.05 and y/a=10"*, but the second is not as y=10.1 and
v/a=0.02. Equation (38a) can therefore be used to explain
the features of Fig. 14, although a small deviation from the
expected behavior is present since Re(c,), is small relative
to Im(c,,), but not zero. When the relative refractive index of
the sphere is increased, the simple structure of Fig. 14 devel-
ops new features as shown by Fig. 15. There are the growth
of the real component so as to be comparable with the imagi-
nary part and the appearance of modulated envelope curves
of the two components that oscillate about zero with order.

The present analysis is applicable to all homogeneous di-
electric spheres and, despite the complexity of the formula-
tion, gives valuable insight into the behavior of the scattering
coefficients as a function of order. Since a good estimate of «
may be obtained from the Gegenbauer spectrum of the scat-
tering pattern, it is anticipated that the main use of the above
formulas will be in the search for algorithms that will allow
the determination of .

Our treatment is also directly applicable to absorbing ho-
mogeneous spheres, but the complex values of 8 would lead
to complex expressions for 3,(8),M,(B), and A,(B). The
conditions for generalizing the present technique to other
geometries are that the electric and magnetic phase angles of
the specimen have the same forms as Egs. (3) and involve
functions that can be written as products of moduli and phase
factors. Both of these conditions are satisfied by a long ho-
mogeneous circular cylinder with illumination incident per-
pendicularly to its axis.

APPENDIX A

Properties of the modulus and phase factors of Riccati-
Bessel functions are as follows.

...........
vvvvvvvvvv

1. Definitions

The Riccati-Bessel functions are related to spherical
Bessel functions j,(z) and n,(z) by
u(z)=2j,(2),

Xn(2)=2zn,(2) (AD)

and are expressible in the forms

u(2)=M,(2)sinD,(2), xn(2)=—M ,(2)cosT,(2),
(A2

Y, (2) =N, (2)cosp,(2), x,(2)=N,(z)sind,(2), (A3)

in which the primes denote differentiation with respect to z.
These definitions match our requirements ,(z)=sinz and
Xo(2)=—cosz, while for large orders ,(z)—0 and
¥l (z)—0 imply 9,(z2)—0 and ¢,(z)— m/2 when n— .
The moduli M,(z),N,(z) and phase factors 9,(z),¢,(2)
may then be obtained from

My2)=yi(2)+xa(2), NAD=y (D) +x2(2),  (A4)

a(2) Xn(2)
a1 a1

I3,(z)=tan { Xn(z)] , ¢,(z)=tan [ (ﬂ,’,(Z)}. (A5)

2. The Wronskian function
The Wronskian function
Un(2) X, (2) — P (2) xa(2) =1 (A6)

or by substitution

M, (z)N,(z)cosA,(z)=1, (A7)
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FIG. 16. Variation of M ,(z) and N,(z) with
order for z;=500.0 and z,=510.5.
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where A, (2)=¢,(2)— 9,(2).

3. Relations

Differentiation of Egs. (A2) and the applications of Egs.
(A3) yields ’

N, (z)cosA ,(2) =M ,(2) F,(2), (A8)
N, (z)sinA,(z)=—M,(z2). (A9)
These may be converted into

M%(2)9(2)=1, (A10)

tanA ,(z)=—M ,(2)M,(2) = — [ ,,(2) ¥,,(2) + x(2) Xx,(2)]
(A11)

by Eq. (A7). From Egs. (A3) and (A7) we may also obtain

o cos[B,(z)+A,(2)]  , sin[9,(2)+A,(2)]
vn(z)= M, (z)cosA,(z) ’ Xn(2)= M, (z)cosA,(z)
(A12)

4. Expressions

1 1x3
Mi(z)=1+5 1 2ok

1X3X5 MPikaks |
2 22 2x4 Z*

2X4X6  2°
(A13)

T -6 (u?—28u,+60)
ﬂn(z)Zz—n—+&+#l(M1 )+,U«1 M1 1

2 2z 2473 80z°

N (5 u3 —380u2 + 3228, — 5040)
89627

+00, (A14)

[ 3 pa  3XS pops
tanAn(z)zﬁ 1+5?+m p

+3><5><7 Mapsps
2X4X6  z° ’

(A15)

in which w,=(n+p)(n—p+1). The series (A13) and
(A15) terminate at p=rn and are exact, but the series (A14)
only applies when n/z is small. Plots of the moduli and
phase factors are presented in Figs. 16 and 17.

5. Approximations

When n<z,
Mi(z)= —1—+O(n2/z4) (A16)
TN /2
p)
2=
O,(z)=z?>— pu,—ntan™! _n+—1,u,1 +0(n3/2%),
(A17)
1 M1 5, 5
tanA,,(z)=E[—ZT_W+O(n /2°). (A18)
But for n+ =z,

MZ%(2)~1.257(z)'?, (A19)
U,(z)= /6, (A20)
tanA ,(z)~1/V/3. (A21)

APPENDIX B

The general solution of the multipole phase angles is as
follows. The multipole phase angles are defined by



- - ~ o or:er ™ < <
N U (B (a)—mip,(B) i, (a) (Bla)
" (B xa(@)—mip, (B x (@)’
tanvn:mlﬁn(ﬁ)%(a)—l//n(ﬁ)i/fn(a) (B1b)

m i (B)xn(a) = (B Xn(@)

Substitution of expressions (A2) and (Al12) into the above
equations then results in

u
tan[ "}
Un

_a tand,(B) —b tan9,(a)—c tanI,(a)tand,(B)

¢ tan9,(B) +a tand,(a)tand,(B)+b ’
(B2)

where for

u,: a=m/Mﬁ(a),

a=1M*(a),

b=1M(B);

Up': b=m/M(B);

and c=a tanA, (a)—b tanA,(B). It should be noted that a
and b are always positive, but the sign of ¢ is positive for
m>1 and negative when m<1.

We wish to show that the phase angles can be written as

{un}_ o tan[3,(B)+ 7]—tan[ ¥ ,(a)+ p]
@y T T+ o [ 9,(8)+ rlan[J,(a) + p]°

(B3)

To this end, the tangent terms in Eq. (B3) are expanded and
the resulting expression compared with Eq. (B2) gives

0= o tanT—tanp, (B4a)
ya= o+ tanp tanr, (B4b)
yb=1+ o tanp tanr, (B4c)
yc= o tanp—tanr, (B4d)
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“ FIG. 17. Variation of 4,(z) and A,(z) with
order for z;=500.5 and z,=510.5.
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in which v is a common factor. These may be reduced by
using Eq. (B4a) to

va=o(1+tan’7), (B5a)
yb=1+ o’tan’r, (B5b)
vye=(0?—1)tanr. (B5c¢)

Since a and b are always positive, so also are y and o by
Egs. (B5b) and (B5a), respectively. The sign of tanr given by
Eq. (B5c) is more complex and leads to solutions that may
be classified into two domains as shown in Fig. 18. y may be
eliminated from Egs. (B5) by the combinations

a’+b*+c? 1+0?

2ab 20 ° (B6a)
a’—b%*+c? 1= tan’T
2bc " 2tant (B6b)
to give solutions
o=e" ", (B7)
(a) 4“’ 5 A ®
=
1 “ // }
1 1
/Vn/ / u”%
% 0 o 0 / -
0 tan T 0 tan T

FIG. 18. Domains of the multipole phase angles for (a) m>1,
¢>0, and (b) m<1, ¢<0.
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e N
tant= N (B8)
—eN,
where
N a’+b%+c?
coshk= ————, (B9)
o= S+ B10
Sin. = —Zbc— ( )

We note that k may always be taken as positive, but A may
be either positive or negative. The particular choice of solu-
tion is obtained from Fig. 18 as follows. When m>1 and
c>0,

u,: o=e*, tant=e N, (Blla)
V,: o=e ¥, tant=—el, (B11b)
but for m<<1 and ¢ <0,
u,: o=e ¥, tant=e ), (B12a)
v,: o=e, tant=—e. (B12b)

As Eq. (B3) has now been verified, we may proceed with its
inversion. Letting

o tan[ 9,(B) + 7]=tan[ 3,(B) + 7+ €], (B13)
then
(o0o—1)tan[ 9,(B) + 7]
e = [ .(B) - ] (B14)
Similarly,

tanp= o tanT=tan(7+ €,) (B15)
gives
p=T1te,, (B16)
where
(o—1)tant
tane, = (B17)

1+ 0 tan’7’
Thus Eq. (B3) may be written as

{un] tan[ 3,(8)+ 7+ €;]—tan[ I (@) + 7+ €, ]
tan =

v, 1+tan[9,(B)+ 7+ € Jtan[ 3,(a) + 7+ €]’
(B18)
with the solution
[;‘} =[9,(B)+ 7+ e ]-[9,(a)+ 7+,
=0,(B)— V. (a)+ e —e. (B19)

Separation of the solution into dominant and incremental
components then yields

o= 0,08)- 0, (B20)
and
{ﬁn‘_ R (o—1)tan[9,(B) + 7]
0, © €= tan 1+ 0 tan’[9,(B8) + 7]
| (e—1)tanT
—tan™! m} (B21)

Both €, and ¢, lie in the range — /2 to +7/2.
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